Q	Answer	Mark	Comments
	$\frac{15-8}{6-2}$ or $\frac{7}{4}$	M1	oe eg $\frac{8-15}{2-6}$ or 1.75 may be embedded in an attempt at equation of line eg $y = \frac{7}{4}x$ may be implied
1	$-1 \div \text{their } \frac{7}{4} \text{ or } -\frac{4}{7}$ or $\frac{17-9}{x-0} \times \text{their } \frac{7}{4} = -1$	M1	oe allow [-0.57143, -0.57] may be embedded in an attempt at equation of a line eg $y = \text{their} - \frac{4}{7}x$
	$17 - 9 = \text{their} - \frac{4}{7}x$ or $-4x = 56$ or $56 \div -4$	M1dep	oe equation must be of the form $ax = b$ (b can be unprocessed) dep on 2nd M1
	-14	A1	

	Additional Guidance			
	The second mark is not dependent on the first – see examples below			
	(gradient of line through given points =) $\frac{6-2}{15-8} = \frac{4}{7}$			
	(gradient of perpendicular line =) $-\frac{7}{4}$	M1		
	$17 - 9 = -\frac{7}{4}x$	M1		
	(gradient of line through given points =) $-\frac{7}{4}$			
1 cont	$\frac{17-9}{x} \times -\frac{7}{4} = -1$	M1		
Cont	-56 = -4x	M1		
	(gradient of line through given points =) $\frac{7}{4}$	M1		
	(gradient of perpendicular line =) $\frac{4}{7}$	МОМО		
	Condone use of letters for gradients eg $x = 1.75$			
	For the first two marks, condone inclusion of x in their gradients			
	Answer –14 that comes from rounding or truncating cannot score A1			
	eg1 (perp grad =) -0.57 8 = -0.57x Answer -14	M3A1		
	eg2 (perp grad =) -0.57 8 = $-0.57x$ = -14.03 Answer -14	M3A0		

Q	Answer	Mark	Comments	
	Alternative method 1 – using the equations of the lines			
	$\frac{22-y}{8-0}=2$		oe equation using any letter y is the y-coordinate of P	
	or $22 = 2 \times 8 + c$ or $(c =) 22 - 2 \times 8$			
	or $c = 6$ or P is at $(0, 6)$ or $(PR =) y = 2x + 6$	M1	ignore missing brackets	
	or y-coordinate of P is 6 or y-coordinate of Q is 6		may be seen on diagram may be seen on diagram	
	$2m = -1$ or $(m =) -\frac{1}{2}$	M1	oe gradient of <i>RQ</i>	
2	$22 = \text{their} - \frac{1}{2} \times 8 + c$ or		oe equation in <i>c</i> dep on previous mark	
	22 = -4 + c or $c = 26$ or	M1dep		
	$(RQ =) y = -\frac{1}{2}x + 26$		oe equation of RQ	
	their $(-\frac{1}{2}x + 26)$ = their 6		oe equation in x where x is the x -coordinate of Q	
	or x-coordinate of Q is 40	M1dep	dep on M3 $-\frac{1}{2} = \frac{22 - \text{their } 6}{8 - x} \text{ implies M4 if their 6 is correct or from correct working}$	
	(40, 6)	A1		

	Alternative method 2 – using similar triangles		
	Drops a perpendicular from R to point S on PQ		any or no letter
	and	M1	
	uses $RS = 2PS = 16$ to work out that P is at $(0, 6)$		eg 22-2×8
	2 <i>m</i> = -1		oe
	or $(m =) -\frac{1}{2}$	M1	gradient of RQ
	or	IVII	
2	$\frac{RS}{SQ} = \frac{1}{2}$		
cont	16 × 2 or 32		length of SQ
		M1dep	may be seen on diagram
			dep on previous mark
	8 + their 32		
	or	M1dep	
	x-coordinate of Q is 40		
	(40, 6)	A 1	
	Additional Guidance		
	Note that 40 (for the <i>x</i> -coordinate of <i>Q</i>) implies M3 (on alt 2) and implies M4 if 6 is also seen (on alt 1)		

Q	Answer	Mark	Comment		
	Alternative method 1				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$8 = \text{their} - \frac{1}{2} \times 4 + c$ or $c = 10$	M1dep	oe equation in c (any letter) dep on previous mark		
3	$0 = \text{their} - \frac{1}{2}x + \text{their } 10$	M1	oe equation in x ft their equation of the form $y = mx + c$ where m and c are numbers $\neq 0$		
3	20	A1	condone (20, 0)		
	Alternative method 2				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$\frac{8-0}{4-x} = \text{their} - \frac{1}{2}$	M1dep	oe equation in x dep on previous mark		
	their $2 \times (8-0) = \text{their } -1 \times (4-x)$ or $16 = -4 + x$	M1dep	oe linear equation in x		
	20	A 1	condone (20, 0)		

	Alternative method 3				
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point		
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient		
	$y - 8 = \text{their} - \frac{1}{2} \times (x - 4)$	M1dep	oe equation eg $x + 2y = 20$ dep on previous mark		
	$0 - 8 = \text{their} - \frac{1}{2} \times (x - 4)$	M1	oe linear equation in x ft their equation in y and x		
3 (cont)	20	A1	condone (20, 0)		
	Alternative method 4				
	$4^2 + 8^2$ and $(x-4)^2 + 8^2$	M1			
	$x^2 = 4^2 + 8^2 + (x - 4)^2 + 8^2$	M1dep	oe equation in x		
	$x^2 = 16 + 64 + x^2 - 8x + 16 + 64$	M1dep	oe equation in \boldsymbol{x} with brackets expanded and squares evaluated		
	8x = 16 + 64 + 16 + 64 or $8x = 160$	M1dep	oe linear equation in x		
	20	A1	condone (20, 0)		

Q	Answer	Mark	Comments	
	 Fully correct diagram with all these 6 conditions met Line length 6 cm from B Line perpendicular to AB from B Line length 7 cm parallel to AB Area of pentagon = 54 cm² Pentagon has exactly one line of symmetry Labelled pentagon 	В4	B3 5 conditions met B2 4 conditions met B1 3 conditions met condone label E missing	
4	Additional Guidance			
Mark intention				
	Ignore any lines inside the shape eg			
A diagram that is not a pentagon can only meet the first 3 co		t the first 3 conditions	B0 or B1	
				B4

Q	Answer	Mark	Comments
	$(m_1 =) \frac{-7 - 9}{35}$ or $(m_1 =) \frac{97}{-5 - 3}$ or -2	M1	gradient of AC
	$-1 \div \text{their} -2 \text{ or } \frac{1}{2}$	gradient of line perpendicular of their –2 must be identified as a $\frac{1}{2}$ implies M1M1	
5(a)	$-7 = \text{their } \frac{1}{2} \times 3 + c \text{ or } (c =) -8.5$ or $y7 = \text{their } \frac{1}{2}(x - 3)$	M1dep	oe condone any letter for <i>c</i> dep on 2nd M1
y =	$y = \frac{1}{2}x - 8.5$	A1	oe eg $2y = x - 17$
	Additional Guidance		
	Check part (a) for working for part (b)		